Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529501

RESUMO

Inducible pluripotent stem cells (iPSCs) derived from patient samples have significantly enhanced our ability to model neurological diseases. Comparative studies of dopaminergic (DA) neurons differentiated from iPSCs derived from siblings with Gaucher disease discordant for parkinsonism provides a valuable avenue to explore genetic modifiers contributing to GBA1-associated parkinsonism in disease-relevant cells. However, such studies are often complicated by the inherent heterogeneity in differentiation efficiency among iPSC lines derived from different individuals. To address this technical challenge, we devised a selection strategy to enrich dopaminergic (DA) neurons expressing tyrosine hydroxylase (TH). A neomycin resistance gene (neo) was inserted at the C-terminus of the TH gene following a T2A self-cleavage peptide, placing its expression under the control of the TH promoter. This allows for TH+ DA neuron enrichment through geneticin selection. This method enabled us to generate comparable, high-purity DA neuron cultures from iPSC lines derived from three sisters that we followed for over a decade: one sibling is a healthy individual, and the other two have Gaucher disease (GD) with GBA1 genotype N370S/c.203delC+R257X (p.N409S/c.203delC+p.R296X). Notably, the younger sister with GD later developed Parkinson disease (PD). A comprehensive analysis of these high-purity DA neurons revealed that although GD DA neurons exhibited decreased levels of glucocerebrosidase (GCase), there was no substantial difference in GCase protein levels or lipid substrate accumulation between DA neurons from the GD and GD/PD sisters, suggesting that the PD discordance is related to of other genetic modifiers.

2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339105

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations in GBA1, characterized by glucocerebrosidase dysfunction and glucocerebroside and glucosylsphingosine accumulation. Since phenotypes of murine models of GD often differ from those in patients, the careful characterization of Gba1 mutant mice is necessary to establish their ability to model GD. We performed side-by-side comparative biochemical and pathologic analyses of four murine Gba1 models with genotypes L444P/L444P (p.L483P/p.L483P), L444P/null, D409H/D409H (p.D448H/p.D448H) and D409H/null, along with matched wildtype mice, all with the same genetic background and cage conditions. All mutant mice exhibited significantly lower glucocerebrosidase activity (p < 0.0001) and higher glucosylsphingosine levels than wildtype, with the lowest glucocerebrosidase and the highest glucosylsphingosine levels in mice carrying a null allele. Although glucocerebrosidase activity in L444P and D409H mice was similar, D409H mice showed more lipid accumulation. No Gaucher or storage-like cells were detected in any of the Gba1 mutant mice. Quantification of neuroinflammation, dopaminergic neuronal loss, alpha-synuclein levels and motor behavior revealed no significant findings, even in aged animals. Thus, while the models may have utility for testing the effect of different therapies on enzymatic activity, they did not recapitulate the pathological phenotype of patients with GD, and better models are needed.


Assuntos
Doença de Gaucher , Psicosina/análogos & derivados , Camundongos , Humanos , Animais , Idoso , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutação
3.
Aging Cell ; 22(9): e13903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365004

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.


Assuntos
Senilidade Prematura , Doenças do Desenvolvimento Ósseo , Progéria , Camundongos , Animais , Progéria/genética , Progéria/metabolismo , Mutação , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Diferenciação Celular
4.
Respir Res ; 23(1): 112, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35509004

RESUMO

BACKGROUND: HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF. METHODS: To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin. RESULTS: Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis. CONCLUSION: This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.


Assuntos
Síndrome de Hermanski-Pudlak , Fibrose Pulmonar Idiopática , Albinismo , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibrose , Transtornos Hemorrágicos , Síndrome de Hermanski-Pudlak/induzido quimicamente , Síndrome de Hermanski-Pudlak/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão , Camundongos
5.
Blood Adv ; 5(23): 4949-4962, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34492681

RESUMO

RUNX1 is essential for the generation of hematopoietic stem cells (HSCs). Runx1-null mouse embryos lack definitive hematopoiesis and die in mid-gestation. However, although zebrafish embryos with a runx1 W84X mutation have defects in early definitive hematopoiesis, some runx1W84X/W84X embryos can develop to fertile adults with blood cells of multilineages, raising the possibility that HSCs can emerge without RUNX1. Here, using 3 new zebrafish runx1-/- lines, we uncovered the compensatory mechanism for runx1-independent hematopoiesis. We show that, in the absence of a functional runx1, a cd41-green fluorescent protein (GFP)+ population of hematopoietic precursors still emerge from the hemogenic endothelium and can colonize the hematopoietic tissues of the mutant embryos. Single-cell RNA sequencing of the cd41-GFP+ cells identified a set of runx1-/--specific signature genes during hematopoiesis. Significantly, gata2b, which normally acts upstream of runx1 for the generation of HSCs, was increased in the cd41-GFP+ cells in runx1-/- embryos. Interestingly, genetic inactivation of both gata2b and its paralog gata2a did not affect hematopoiesis. However, knocking out runx1 and any 3 of the 4 alleles of gata2a and gata2b abolished definitive hematopoiesis. Gata2 expression was also upregulated in hematopoietic cells in Runx1-/- mice, suggesting the compensatory mechanism is conserved. Our findings indicate that RUNX1 and GATA2 serve redundant roles for HSC production, acting as each other's safeguard.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA2/metabolismo , Hemangioblastos , Proteínas de Peixe-Zebra/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA2/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Camundongos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
NPJ Regen Med ; 5: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218991

RESUMO

Spinal muscular atrophy (SMA) is the most common genetic disease in children. SMA is generally caused by mutations in the gene SMN1. The survival of motor neurons (SMN) complex consists of SMN1, Gemins (2-8), and Strap/Unrip. We previously demonstrated smn1 and gemin5 inhibited tissue regeneration in zebrafish. Here we investigated each individual SMN complex member and identified gemin3 as another regeneration-essential gene. These three genes are likely pan-regenerative, since they affect the regeneration of hair cells, liver, and caudal fin. RNA-Seq analysis reveals that smn1, gemin3, and gemin5 are linked to a common set of genetic pathways, including the tp53 and ErbB pathways. Additional studies indicated all three genes facilitate regeneration by inhibiting the ErbB pathway, thereby allowing cell proliferation in the injured neuromasts. This study provides a new understanding of the SMN complex and a potential etiology for SMA and potentially other rare unidentified genetic diseases with similar symptoms.

7.
Mol Biol Cell ; 31(6): 452-465, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31967935

RESUMO

The fundamental problem in axon growth and guidance is to understand how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. We here dissect this process using live imaging of the TSM1 axon of the developing Drosophila wing. We find that the growth cone is almost purely filopodial, and that it extends by a protrusive mode of growth. Quantitative analysis reveals two separate groups of growth cone properties that together account for growth cone structure and dynamics. The core morphological features of the growth cone are strongly correlated with one another and define two discrete morphs. Genetic manipulation of a critical mediator of axon guidance signaling, Abelson (Abl) tyrosine kinase, shows that while Abl weakly modulates the ratio of the two morphs it does not greatly change their properties. Rather, Abl primarily regulates the second group of properties, which report the organization and distribution of actin in the growth cone and are coupled to growth cone velocity. Other experiments dissect the nature of that regulation of actin organization and how it controls the spatial localization of filopodial dynamics and thus axon extension. Together, these observations suggest a novel, probabilistic mechanism by which Abl biases the stochastic fluctuations of growth cone actin to direct axon growth and guidance.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Morfogênese , Proteínas Tirosina Quinases/metabolismo , Actinas/metabolismo , Animais , Cones de Crescimento/metabolismo , Análise de Componente Principal , Pseudópodes/metabolismo
8.
Mol Biol Cell ; 31(6): 466-477, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31967946

RESUMO

The fundamental problem in axon growth and guidance is understanding how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. Live imaging of the TSM1 axon of the developing Drosophila wing has shown that the essential role of the core guidance signaling molecule, Abelson (Abl) tyrosine kinase, is to modulate the organization and spatial localization of actin in the advancing growth cone. Here, we dissect in detail the properties of that actin organization and its consequences for growth cone morphogenesis and motility. We show that advance of the actin mass in the distal axon drives the forward motion of the dynamic filopodial domain that defines the growth cone. We further show that Abl regulates both the width of the actin mass and its internal organization, spatially biasing the intrinsic fluctuations of actin to achieve net advance of the actin, and thus of the dynamic filopodial domain of the growth cone, while maintaining the essential coherence of the actin mass itself. These data suggest a model whereby guidance signaling systematically shapes the intrinsic, stochastic fluctuations of actin in the growth cone to produce axon growth and guidance.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Modelos Biológicos , Movimento (Física) , Fenótipo , Processos Estocásticos , Análise de Ondaletas
9.
Dis Model Mech ; 13(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996359

RESUMO

Niemann-Pick disease type C1 (NPC1) is a rare, fatal neurodegenerative disorder characterized by lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. NPC1 is extremely heterogeneous in the timing of clinical presentation and is associated with a wide spectrum of causative NPC1 mutations. To study the genetic architecture of NPC1, we have generated a new NPC1 mouse model, Npc1em1PavNpc1em1Pav/em1Pav mutants showed notably reduced NPC1 protein compared to controls and displayed the pathological and biochemical hallmarks of NPC1. Interestingly, Npc1em1Pav/em1Pav mutants on a C57BL/6J genetic background showed more severe visceral pathology and a significantly shorter lifespan compared to Npc1em1Pav/em1Pav mutants on a BALB/cJ background, suggesting that strain-specific modifiers contribute to disease severity and survival. QTL analysis for lifespan of 202 backcross N2 mutants on a mixed C57BL/6J and BALB/cJ background detected significant linkage to markers on chromosomes 1 and 7. The discovery of these modifier regions demonstrates that mouse models are powerful tools for analyzing the genetics underlying rare human diseases, which can be used to improve understanding of the variability in NPC1 phenotypes and advance options for patient diagnosis and therapy.This article has an associated First Person interview with the first author of the paper.


Assuntos
Patrimônio Genético , Longevidade , Doença de Niemann-Pick Tipo C/patologia , Índice de Gravidade de Doença , Alelos , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Degeneração Neural/patologia , Proteína C1 de Niemann-Pick , Fenótipo , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Vísceras/patologia , Redução de Peso
10.
Dis Model Mech ; 12(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31727854

RESUMO

Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.


Assuntos
Adenilato Quinase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/fisiologia , Perda Auditiva Neurossensorial/metabolismo , Leucopenia/metabolismo , Regeneração , Imunodeficiência Combinada Severa/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Morte Celular , Linhagem Celular , Cruzamentos Genéticos , Modelos Animais de Doenças , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Transplante de Células-Tronco Hematopoéticas , Leucopenia/genética , Microscopia Confocal , Estresse Oxidativo , Fenótipo , Imunodeficiência Combinada Severa/genética , Estresse Fisiológico , Peixe-Zebra
11.
Biosci Rep ; 39(11)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31696214

RESUMO

BACKGROUND: Sorting Nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain common among all of the sorting nexin family, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells (mpkCCD) using a GST-SNX27 fusion construct as bait. We found that the C-terminal type I PDZ binding motif (DTDL) of ß-catenin, an adherens junction scaffolding protein and transcriptional co-activator, interacts directly with SNX27. Using biochemical and immunofluorescent techniques, ß-catenin was identified in endosomal compartments where co-localization with SNX27 was observed. Furthermore, E-cadherin, but not Axin, GSK3 or Lef-1 was located in SNX27 protein complexes. While overexpression of wild-type ß-catenin protein increased TCF-LEF dependent transcriptional activity, an enhanced transcriptional activity was not observed in cells expressing ß-Catenin ΔFDTDL or diminished SNX27 expression. These results imply importance of the C-terminal PDZ binding motif for the transcriptional activity of ß-catenin and propose that SNX27 might be involved in the assembly of ß-catenin complexes in the endosome.


Assuntos
Nexinas de Classificação/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Linhagem Celular , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Camundongos , Domínios PDZ/fisiologia , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Transcrição Gênica/fisiologia
12.
J Exp Med ; 212(8): 1185-202, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26150473

RESUMO

Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD.


Assuntos
Adenilato Quinase/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Leucopenia/enzimologia , Leucopenia/fisiopatologia , Estresse Oxidativo/fisiologia , Células-Tronco Pluripotentes/fisiologia , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/fisiopatologia , Laranja de Acridina , Adenilato Quinase/deficiência , Animais , Antioxidantes/farmacologia , Apoptose/fisiologia , Compostos Azo , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Biologia Computacional , Primers do DNA/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Dados de Sequência Molecular , Naftalenos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Peixe-Zebra
13.
Stem Cells Transl Med ; 4(3): 230-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25637190

RESUMO

Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.


Assuntos
Sinalização do Cálcio , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Via de Sinalização Wnt , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética
14.
Mol Biol Cell ; 25(19): 2993-3005, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25103244

RESUMO

The Golgi apparatus is optimized separately in different tissues for efficient protein trafficking, but we know little of how cell signaling shapes this organelle. We now find that the Abl tyrosine kinase signaling pathway controls the architecture of the Golgi complex in Drosophila photoreceptor (PR) neurons. The Abl effector, Enabled (Ena), selectively labels the cis-Golgi in developing PRs. Overexpression or loss of function of Ena increases the number of cis- and trans-Golgi cisternae per cell, and Ena overexpression also redistributes Golgi to the most basal portion of the cell soma. Loss of Abl or its upstream regulator, the adaptor protein Disabled, lead to the same alterations of Golgi as does overexpression of Ena. The increase in Golgi number in Abl mutants arises in part from increased frequency of Golgi fission events and a decrease in fusions, as revealed by live imaging. Finally, we demonstrate that the effects of Abl signaling on Golgi are mediated via regulation of the actin cytoskeleton. Together, these data reveal a direct link between cell signaling and Golgi architecture. Moreover, they raise the possibility that some of the effects of Abl signaling may arise, in part, from alterations of protein trafficking and secretion.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/agonistas , Drosophila/metabolismo , Complexo de Golgi/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Proteínas Tirosina Quinases , Transdução de Sinais
15.
Blood ; 124(1): 70-8, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24850758

RESUMO

CBFß and RUNX1 form a DNA-binding heterodimer and are both required for hematopoietic stem cell (HSC) generation in mice. However, the exact role of CBFß in the production of HSCs remains unclear. Here, we generated and characterized 2 zebrafish cbfb null mutants. The cbfb(-/-) embryos underwent primitive hematopoiesis and developed transient erythromyeloid progenitors, but they lacked definitive hematopoiesis. Unlike runx1 mutants, in which HSCs are not formed, nascent, runx1(+)/c-myb(+) HSCs were formed in cbfb(-/-) embryos. However, the nascent HSCs were not released from the aorta-gonad-mesonephros (AGM) region, as evidenced by the accumulation of runx1(+) cells in the AGM that could not enter circulation. Moreover, wild-type embryos treated with an inhibitor of RUNX1-CBFß interaction, Ro5-3335, phenocopied the hematopoietic defects in cbfb(-/-) mutants, rather than those in runx1(-/-) mutants. Finally, we found that cbfb was downstream of the Notch pathway during HSC development. Our data suggest that runx1 and cbfb are required at 2 different steps during early HSC development. CBFß is not required for nascent HSC emergence but is required for the release of HSCs from AGM into circulation. Our results also indicate that RUNX1 can drive the emergence of nascent HSCs in the AGM without its heterodimeric partner CBFß.


Assuntos
Fator de Ligação a CCAAT/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Fator de Ligação a CCAAT/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Técnicas de Inativação de Genes , Hibridização In Situ , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
16.
Dev Dyn ; 241(5): 879-89, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22411201

RESUMO

BACKGROUND: Vertebrate hematopoiesis is a complex developmental process that is controlled by genes in diverse pathways. To identify novel genes involved in early hematopoiesis, we conducted an ENU (N-ethyl-N-nitrosourea) mutagenesis screen in zebrafish. The mummy (mmy) line was investigated because of its multiple hematopoietic defects. RESULTS: Homozygous mmy embryos lacked circulating blood cell types and were dead by 30 hr post-fertilization (hpf). The mmy mutants did not express myeloid markers and had significantly decreased expression of progenitor and erythroid markers in primitive hematopoiesis. Through positional cloning, we identified a truncation mutation in dhx8 in the mmy fish. dhx8 is the zebrafish ortholog of the yeast splicing factor prp22, which is a DEAH-box RNA helicase. mmy mutants had splicing defects in many genes, including several hematopoietic genes. mmy embryos also showed cell division defects as characterized by disorganized mitotic spindles and formation of multiple spindle poles in mitotic cells. These cell division defects were confirmed by DHX8 knockdown in HeLa cells. CONCLUSIONS: Together, our results confirm that dhx8 is involved in mRNA splicing and suggest that it is also important for cell division during mitosis. This is the first vertebrate model for dhx8, whose function is essential for primitive hematopoiesis in developing embryos.


Assuntos
Divisão Celular/genética , RNA Helicases DEAD-box/genética , Hematopoese/genética , Splicing de RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Diferenciação Celular/genética , RNA Helicases DEAD-box/metabolismo , Embrião não Mamífero/metabolismo , Sistema Hematopoético/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Blood ; 118(17): e139-48, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21900194

RESUMO

Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map trans-factor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1.


Assuntos
Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Eritrócitos/fisiologia , Células Precursoras Eritroides/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Animais , Sítios de Ligação/genética , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Embrião de Mamíferos , Eritrócitos/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Ligação Proteica , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo
18.
J Biol Chem ; 286(45): 39403-16, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21926430

RESUMO

Sorting nexin 27 (SNX27) is a 62-kDa protein localized to early endosomes and known to regulate the intracellular trafficking of ion channels and receptors. In addition to a PX domain, SNX27 is the only sorting family member that contains a PDZ domain. To identify novel SNX27-PDZ binding partners, we performed a proteomic screen in mouse principal kidney cortical collecting duct cells using a GST-SNX27 fusion construct as bait. We found that ß-Pix (p21-activated kinase-interactive exchange factor), a guanine nucleotide exchange factor for the Rho family of small GTPases known to regulate cell motility directly interacted with SNX27. The association of ß-Pix and SNX27 is specific for ß-Pix isoforms terminating in the type-1 PDZ binding motif (ETNL). In the same screen we also identified Git1/2 as a potential SNX27 interacting protein. The interaction between SNX27 and Git1/2 is indirect and mediated by ß-Pix. Furthermore, we show recruitment of the ß-Pix·Git complex to endosomal sites in a SNX27-dependent manner. Finally, migration assays revealed that depletion of SNX27 from HeLa and mouse principal kidney cortical collecting duct cells significantly decreases cell motility. We propose a model by which SNX27 regulates trafficking of ß-Pix to focal adhesions and thereby influences cell motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Túbulos Renais Coletores/metabolismo , Fosfoproteínas/metabolismo , Nexinas de Classificação/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Movimento Celular/fisiologia , Adesões Focais/genética , Adesões Focais/metabolismo , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Túbulos Renais Coletores/citologia , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Células NIH 3T3 , Domínios PDZ , Fosfoproteínas/genética , Transporte Proteico , Fatores de Troca de Nucleotídeo Guanina Rho , Nexinas de Classificação/genética
19.
Cell Cycle ; 8(19): 3199-207, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19755857

RESUMO

Genomic integrity depends on DNA replication, recombination and repair, particularly in S phase. We demonstrate that a human homologue of yeast Elg1 plays an important role in S phase to preserve genomic stability. The level of ELG1 is induced during recovery from a variety of DNA damage. In response to DNA damage, ELG1 forms distinct foci at stalled DNA replication forks that are different from DNA double strand break foci. Targeted gene knockdown of ELG1 resulted in spontaneous foci formation of gamma-H2AX, 53BP1 and phosphorylated-ATM that mark chromosomal breaks. Abnormal chromosomes including fusions, inversions and hypersensitivity to DNA damaging agents were also observed in cells expressing low level of ELG1 by targeted gene knockdown. Knockdown of ELG1 by siRNA reduced homologous recombination frequency in the I-SceI induced double strand break-dependent assay. In contrast, spontaneous homologous recombination frequency and sister chromatin exchange rate were upregulated when ELG1 was silenced by shRNA. Taken together, we propose that ELG1 would be a new member of proteins involved in maintenance of genomic integrity.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase S
20.
Mol Cell ; 35(5): 642-56, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19748358

RESUMO

Structural changes in specific chromatin domains are essential to the orderly progression of numerous nuclear processes, including transcription. We report that the nuclear protein NSBP1 (HMGN5), a recently discovered member of the HMGN nucleosome-binding protein family, is specifically targeted by its C-terminal domain to nucleosomes in euchromatin. We find that the interaction of NSBP1 with nucleosomes alters the compaction of cellular chromatin and that in living cells, NSBP1 interacts with linker histones. We demonstrate that the negatively charged C-terminal domain of NSBP1 interacts with the positively charged C-terminal domain of H5 and that NSBP1 counteracts the linker histone-mediated compaction of a nucleosomal array. Dysregulation of the cellular levels of NSBP1 alters the transcription level of numerous genes. We suggest that mouse NSBP1 is an architectural protein that binds preferentially to euchromatin and modulates the fidelity of the cellular transcription profile by counteracting the chromatin-condensing activity of linker histones.


Assuntos
Montagem e Desmontagem da Cromatina , Eucromatina/metabolismo , Proteínas HMGN/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Linhagem Celular Transformada , Eucromatina/química , Perfilação da Expressão Gênica , Proteínas HMGN/química , Proteínas HMGN/genética , Histonas/química , Lisina , Metilação , Camundongos , Microscopia Confocal , Modelos Moleculares , Células NIH 3T3 , Conformação de Ácido Nucleico , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/química , Transativadores/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...